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Some Asymptotic Properties of 
Pade Approximants to ex 

By C. Underhill 

Abstract. The method of matched asymptotic expansions is used to analyze the asymptotic 
behavior of the real zeros of, and error incurred by, Pade approximants to e-X. These 
approximants are of interest because of their application in solving systems of ordinary 
differential equations arising from mathematical models of physical processes, for example, 
the heat equation. 

1. Introduction. There is considerable interest in properties of Pade approximants 
to the exponential, not least because of their application in methods for solving those 
systems of ordinary differential equations which arise in mathematical models of 
physical processes. In this paper, some asymptotic properties of Pade approximants 
to e-x are found by using the method of matched asymptotic expansions. First, we 
analyze the behavior of the real zero of odd-degree denominators along any straight 
line path through the Pade table; second, a result due to Saff, Varga and Ni [6] 
concerning the error in the uniform norm on [0, oo) incurred by these approximants 
is reconsidered. 

2. The Real Poles. It is well known that the denominator of the (v, n)th entry of 
the Pade table for e-x is 

- ; vd-n + 2), 

where On(x; a) is a generalized Bessel polynomial given by 

en (x; a ) = 2(n! +' -1)E I(2n + a -j -1) (2x) j 
2~J'(n~a-1)=0 (n -i)!]! 

Recently, Grosswald [4] and de Bruin, Saff and Varga [2] have considered the 
asymptotic behavior as n -* o, through odd values, of /3J(a), the unique (negative) 
real zero of On(x; a). They confined themselves to the case where the value of a is 
fixed, so that the equivalent path in the Pade table is a diagonal; in particular, if 
a = 2, it is the main diagonal, and the polynomials are ordinary Bessel polynomials. 
Here, we consider more generally the asymptotic behavior of 2/n(v - n + 2), i.e., 
the real zero of the denominator of the (v, n) entry, as v and/or n -*oo along any 
straight line path in the Pade table. We start by representing the denominator as an 
integral. 
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3. An Integral Expression for the Denominator. We rely on an extension of an 
integral representation of OS(x; 2) due to Eweida [3]. Using the notation of [6], let 
the Pade denominator be 

Pv,(x), 
and suppose the real zero is y,,,,= 2,3(v - n + 2). Pv "(-x) is given by 

= (-1)nXv+n+le-x/2 o 
e-xs2(s + 1)'(s - 1)'ds, (Rex > 0), 

2P +2n+lJr(v + 1) 
|+ _> 

so that if n is odd, -x = -Yn when I1 = '2' where 

I,.= f'3' e-xs/2(S + 1),j1 - sInds, i = 1,2, 
a, 

withal:= -1, a2:= 1l Ih= 1, /92= He 

We shall find the first few terms in the asymptotic expansion of Y,,,n by matching 
the asymptotic expansions of I1 and I2 obtained by Laplace-type methods. We 
distinguish three cases: 

(i) v = fn + (a - 2), f and a fixed, 0 < f < so, a integral, n -x o. Iff = 1, the 
direction of travel is diagonal, the case considered in [41 and [2]. 

(ii) v fixed, n -x o (a Pade column; if v = 0, the column contains inverses of 
partial sums of the Taylor series of ex about x = 0). 

(iii) n fixed, n >? 1, v -s o (a row of the table). 

4. The Form of the Asymptotic Expansion of yvn. From [2, pp. 4,6], we have 
-n- v - < Yvn < -P(n + v), 

where , 0.278 465 is the unique positive root of the equation pel+9= 1 and 
n > 1, v >? 0. In cases (i) and (ii) we therefore assume that Yn = -(Xin + oi(n)), 
where (p(n) = o(n) as n Xo, i = 1, 2, and in case (iii) that yn = -(X3v + +3(V)), 
where 43(V) = o(v) as v so. In each case, Xi > 0. It is interesting that under these 
assumptions the Laplace-type arguments that establish X and 4 are different in all 
three cases. 

5. Case (i): A Straight Line Across the Pade Table. In Ii, let v = fn + (a-2), f 
and a fixed,0< f < 0o, a integral and let x= -Yn = Xln + pl(n), where XI > 0 
and 41(n) = o(n) as n - oo. Then 

Ii = f|' enh(s)es-hl(n)s/2(S + 1) a-2 d 

where 

h(s) = - +f log(s + 1) + logjl - sI. 

The stationary points of h(s) occur at 

(1 +f) ? 1/(I + f )2 + X1(X1 + 2- 2f) 

S2, S1 = X 

and it is easy to show that -1 < sI < 1 and s2 > 1. The application of Laplace's 
method (see, e.g., [1, pp. 60-65]) gives 

enh(s,)el-1(n)s/2(s + 1)a-2VF/2 
t ~ ~~~ rn ,2 (Si)]1/2 
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as n -- o, i = 1, 2. Since S1 * s2, I, matches I2 only if h(sl) = h(s2), and if 41(n) 
has the form tL1 + o(l), so that 

e 1ls/2 (sI + 1)a-2 e-S12 (S2 + 1) 

[-h (2) (S1) 1/2 [-h (2) (S2)]/ 

Rearranging these equations, we obtain 

THEOREM 5.1. Suppose f and a are fixed, 0 < f < so, a integral and v = fn + 
(a - 2), and that Yn = -X1n + o(n) as n - o, where XA is a constant. 

Then Yvn = -Xln - y + o(1) as n x-* ci, where Ii is a constant and XA and IL are 
given by the equations 

x )( f log 1 + 2j) + log( 1S2 )) 

and 

2 ((a- 2) log(+ S2) +log(S ) 

+ (logf(si 
_ 

1)2+(si + 1)2 

2~ fS2 -1)2 +(S2 +1)2)J 

where 

(1 +1) ? 1(f +j)2 + Alx(X + 2(1 -f)) 
S2 1 SI 

I 

COROLLARY. Under the same conditions, 

/9n((f 
- 1)n + a) n + ) + o(1) as n -oo. 

6. An Extension. In the special case f = 1, considered in [4] and [2], the equations 
of Theorem 5.1 reduce to the more tractable 

[1+X2 /41/2 =1+ +1 

i.e., Xi 1.325 487, and 

Al2+ ( _ 2) Al [l + l~g( 2[I + [l/4I 1/2 

i.e., [l (a - 2) 1.006 290 + 0.662 744. In this case (i.e., when v = n + (a - 2)), 
we now find the next term in the asymptotic expansion of Y1,,n. 

Put -y,,," = Xjn + t1 + A1(n), where XA and iu are given above and {l(n) = o(l) 
as n -- oc. Then 

Ii = |fl enh(s)e-[Al?,1I(n)]s/2(s + -2d 
ae 
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with h(s) =-Xls/2 + logil -2 1. h(s) has its stationary points at 

2- 4 + X2 2 + V4 +Xj 
Si = AX e(-i,1) and s2= e (1,oo). 

Let s - si= a. Then 

e- [Al+ 4,1(n)]sl2 (S + )a-2 

~~~ + 1~~~~~~~2 Sia2 
- e s/2(si+l)a2[1-..4l(n)2j+{s +1 2~}a 

f/2i _ t1A(a - 2) + (a -2)(a - 3))2+ ] 
8 2(s + 1) 2(s1 +1) J 

and 

h (s) - nh(s, inh(2)(S )02 

[1 + 6 h()(sT) + 24 h()(s )Ta + 72 [h(T)(s1)J2'r + * | 

where T = na 3. So the integrand, keeping only those terms which will survive under 
the Laplace process, is 

e-As,/2(s + 1) a-2enh(s,)e nh(2)(s,)U2S 

where 

SI= - 1n Si+ [, tia2 + (a -2)(a -3) 1 2 2 8 2(si + 1) 2(s1 + 1)2 

+ [-h(3)(si)[a + - + 4h (4)(s.)]aT + 7 [h (3(Si)]fT + 

and therefore, as n oo, 

e -As, /2( + l)a-2 enh(s)'F(( 1I 

nl/2[-ih(2)(Si l/2 

where 

Ti I 1- 'Jn )si 

1 ! [y2J/8 - ti(a - 2)/2(si + 1) +(a - 2)(a - 3)/2(si + 1)21 
n 2[- lh(2)(Si)] 2[ 

[rh(3)(si)((a - 2)/(si + 1) - Mi/2) + 1h(4)(Si)] 

+ 2~~~~~~~~ 9 
4[ _ 1h (2)(Si)] 2 

+5 [h (3)(si)] 2 
+ 

192r 1h (2(S) 13 
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Since s * #s2, T1 and T2 match only if Al(n) = vl/n + o(1/n), and then, after 
some algebra and using the relations 

1 - s_ = -4s1/X and 5152 = -1 

we obtain 

xi Al\ 2 (\5 

=2(1 + 2/4) 12(1 + X2/4) 
2(1 + X~ +(4) -j2) A i+ + i a-3 

xi[A)(2) 2 ) 2 2 ] 

Hence we have proved 

THEOREM 6.1. Suppose a is a fixed integer, and v = n + (a - 2), and suppose that 
y = -Xin + o(n) as n -* co, where XA is a constant. Then yvn = -Xln - 

-vl/n 

+ o(1/n) as n -* co, where ,l and v, are constants, and XA, ,l and v, are given by 
the equations 

1 e +X/4]'2 -1+ [1 + 

i.e., Xi 1.325 487, 

xi X ( X log(Xl/2 + [i + X21/4]l1/2)1 
Al 2 - 2 [1 + X2/4]1/ ' 

i.e., Iu (a - 2) 1.006 290 + 0.662 744, and 

xi___ _ f( 2iV (~ 5 
21 = 2(l 1 + 12(1 + X2/4) 

+ (a22) Al ( xi + 1) + (I Ai) (a-3) + 
~-J[ xi- k2J2 2 2 

Of special interest is the case a = 2, where the polynomials are related to ordinary 
Bessel polynomials and the path is the main diagonal of the Pade table. In this case 

xi 
xi = 1.325 487, Al = 0.662744, 

and 

12(1 /1 + -0.018 192. 
2(1 + X21/4) 4 12(1 + X2/4)) 

Let 

- = +) + 1{- 
+ 5/12(1 + X1/4)} 

21( 2n(1 + X21/4) 

In Table I, the entries in the first two columns are taken from [2]; the last column 
shows the effect of the inclusion of the extra term. 
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TABLE I 

n Xj(n + 2) tn 

1 2.000 000 1.988 230 2.006 422 
3 4.644 370 4.639 204 4.645 268 
5 7.293 478 7.291 018 7.293 816 
7 9.943 574 9.941 152 9.943 650 
9 12.594 038 12.592 124 12.594 146 

11 15.244 680 15.243 098 15.244 750 
13 17.895 420 17.894 072 17.895 472 
15 20.546 220 20.545 046 20.546 258 

7. Case (ii): Pade Columns. Let v be fixed and x = X2n + +2(n), where +2(n) = 

o(n) as n --* . Then 

I, = | enh(s)e- 2(n)s/2(s + 1)'ds, 

where h(s) = -X2s/2 + logjl - sj. The stationary point of h(s) occurs at 52 = 

1 + 2/X2> 1 and h'(s) < 0 if s < 1. Hence, if s, is the maximum value of h(s) in 
[-1,1], then s, = -1 and 

enl[\2/2 +Iog2]e'02(n)v!2v+l1 

(X2 + 1)v~lv ' 

while 

e- n[A2/2+ 1 +log(X2/2)]e-2(n)(1 
+2/X2)/22v+?1[1 

+ 
1/x2] Vi 

'2 X 2Vn 

as n -s 0o. 
In this case it is clear that if +2(n) = 0(1), we cannot match I1 and I2. Let 

+2(n) = 4(n) + v2 + o(1), v2 being a constant. Then the powers of n in I1 and I2 

agree only if 

_[v + ] logn+ () 

1 + 1//k 2 

In addition, matching the exponentials, we have 

X2e = 1, 

and, matching the constants, 

_ 1 1o r [1 + 1/X2]2V~1 2] 

-[1+? /X2] v! 

resulting in 

THEOREM 7.1. Suppose that v is fixed and that Y,,n = -X2n + o(n) as n oo, 
where X2 is a constant. Then Yvn = -X2n - A21ogn -V2 + o(1) as n -> 00, where 

tL2 and V2 are constants, and X2, tL2, V2 are given by 

X 2e1+A2 = 1, 2 =[V + 2/[11 + /X2], 
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and 

_ 1 logI [1 + 1/X2] 2 1 

'2 [1 + 1/X2] 
V! 

COROLLARY 1. Under the same conditions, 

fi,,(v-n+ 2) 2 1X + logn + ] + o(1) as n oo. 

COROLLARY 2. Suppose 

tix k 

(the denominators in column number 0 of the Pad6 table), and, if n is odd, let 8,, be 
the unique negative zero of E"(x). Then as n -* oo, 

an = -(X2n + 1i21ogn + V2) + o(1), 

where X2el+XA = 1, i.e., X2 = 0.278 465, 

PL2 = /[1 + 0.108 906 

and 

p2 = [1 + 1 log[ 2[ L + 1 0.523 128. V2 1 + 1/X2]2 

Table II shows the actual values of -8n and of -8n = 0.278 465n + 0.108 906 log n 
+ 0.532 128. 

TABLE II 

n An An 

1 1.000 000 0.810 592 
3 1.596 072 1.487 167 
5 2.180 607 2.099 727 
7 2.759 003 2.693 300 
9 3.333 551 3.277 599 

11 3.905 452 3.856 382 
13 4.475 412 4.431 504 

8. Case (iii): Pade Rows. Let n be fixed and x = X3v + 43(v), where 43(v) = o(v) 
as v -> xo. Then 

Ii - f1A' -s(s)-i3(s2 ds i = 1,2, 
a, 

where h (s) = -A3s/2 + log(1 + s), with one maximum at so = 2/X 3 - 1. Suppose 
X3 # 1. If X3 > 1, the maximum occurs in (-1, 1) and h'(s) < 0 in [1, xo). If 
0 < X3 < 1, the maximum occurs in (1, xo) and h'(s) > 0 in (-1, 1]. In both cases, 
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matching the dominant term in I, and I2 gives h(so) = h(1), i.e., X3 - 1 - logX3 
= 0, i.e., X3 = 1, a contradiction. Hence, X3 = 1. Let 

I = f ev(s) e -?03(v)sl2l, _ 
- In ds with X3 = 1. 

h'(s) = 0 when s = 1, so that 

evh(s) = e h(l)ePh(2)(j)2 /2 [1 + h(3)(1)va 3/6 + ] 
and 

e-4'3(V)s/2 = e- 3(V)/2[1 - 03(V)a/2 + ... 

where a = s - 1. Keeping only those terms which will survive the Laplace process, 
we have 

I ePh(l1)e-03()/2f e- ia2/8 [V an +3 _ 3( v)Can1 + ] do 

and the leading term can only be zero if 

03(v) = 32(n/2 + 1) + o(1) as v -x 00. 

Hence x = v + 2(n/2 + 1) + o(1) as v -x 00. The result is 

THEOREM 8.1. Suppose n is fixed and Yvn = -X3V + o(v) as v -x oo, where X3 is a 
constant. Then yvn = -X3V + o(1) as v xo, where ,3 is a constant and 

3= 1,/3= A3 (n/2 + 1). 

COROLLARY. Under the same conditions, 

13n( ) [ ~2 3 [2 ] 

Note. It is interesting to confirm the result of Theorem 5.3 in the cases n = 1 and 
n = 3. 

P.,(x)=x+v +1, soinfact y.= -(vP 1), 

PP,3(x) = x3 + 3(v + 1)x2 + 3(v + 2)(v + 1)x + (v + 1)(v + 2)(v + 3). 

Solving the equation P^,3 = 0 for real solutions x, we obtain x = -y - (v + 1), 
where y = 2(v + 1)1/2 sinh9 and sinh 39 = (v + 1)-1/2. This can be rewritten as 

(v + 1)1/3 [(1 +(V + 2)1/2)2/3 -(V + 1)/31 

[1 + (Pv + 2) ] 

and it is easy to show that y 
- 

2/3 as v -x 00. Hence x - [v + 5/3] as v -x 00. 

9. The Pade Error on [0, 00). Following [6], let 

Epn(x) := Qp(x)/pn(x) - ex, 

where Qpn(x)/pn(x) is the (v, n) Pade approximant to e-x. Saff, Varga and Ni, [6], 
showed that if { v(n)} is a sequence so that 

lim ( )f, O <f <1, 
n - oo n 
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then 

urn I~e(flflIL[O ')}n ff(i jHl1 lim t |rI)nly [O) Z( 
I--* 0 0 [ 0)21 -f 

and that this limit is minimized when f = 1/3, in which case the limit is also 1/3. 
In what follows, we show that in fact 

n 

|| Efl~flL~[OOO- ~ { f'( 21 21-f 

and hence that 

En/ ln[O oo) (1 3 ? ) as n -x oo. 

Using the Perron representation of the error [5, p. 436], and the Eweida form used 
earlier, it is easy to show that 

(-1) e^n(x) = e& Ix/I2, X > 0, 

where 

- f'1A e-s/e2(1 + s) I1 - slvds, i = 1,2. 
as 

E,,1(x) has one sign on [0, cc) and its modulus has a single maximum for x > 0, 
occurring at x = m, given by e'^n(m) = 0. m is of course a function of both n and v. 
So, 

(1) I'1 - I2'/2 = 1, 

where 

1' = -f- sems/2(1 + s )nil 
- 

v 
s, i = 1,2. 

Then 

EIEn ILY'Ox[0, oo) = IEvn(m) I 

Let v = fn + A(n), where A(n) = o(n) as n xo. Then 

Ii = f'A' e~ h*(s) - Si _5(n) ds 

where h *(s) =-ms/2 + n log(1 + s) + nf log~l -s I. 

h *'( = when 2 (1 +f 
( 

) + f (1 + f)2 
- 2m(1 -f- m/2n)/n 

h*'(s) =O when s2,s51= rn/n 

and in this more general situation it is still possible to show that -1 < s1 < 1, 
s2> 1. Then, 

I_ 1 2and I2 - as n -x , 
,is, 2 12s2 2 

and in (1) we have limn - .(S2 - s1) = 2. Hence we obtain 

lim rn 2 (1+1)2 
I,+.n 2(1 -1f)' 
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i.e., 

m = f ) n + o(n) as n -oo; 
2(1 -f ) 

this should be compared with Eq. 3.10 of [6]. 
Let m = (1 

+ 
f)2n/2(1 - f ) + 4(n), where 4(n) = o(n) as n -- oo. With 

h(s)=-(1+ f)2S +log(1 +s)+flogIl-sI, 
hs- 4(1 -f) 

we obtain 

enhs)e-(n)s/21- s 2 as n --+ 00. 
Ii~~~F f 4-h'2) (Si)] 1/2-an 

Substituting in the equation Ie^n(m)l = e"'1II/I21 and simplifying, we then obtain 

IIE FI.~[X II_)-f 
n 2 

,()a - o P, II [0, 00) f 21 -f 1-ft as n A , 

with v =fn + +1(n), 4'(n)= o(n).Thisproves 

THEOREM 9.1. If in [0, 0o) the maximum of Ie^"(x)I with v = fn + 4(n), 4(n) = 

o(n) as n -- o0, 0 < f < 1, occurs at m, then 

In (1 +f)2 n on) 
2(1 -f) 

and 

,f(1 _f)lff_ /f n( 
P 11 v,1 [0oo) Vf\ 21-f ) 1f (l ) asn -4 oo. 

Putting 4(n) = 0 results in 

COROLLARY 1. If the maximum of I Efn (x)n in [0, 0o) occurs at m, then 

m = (G1 +f ) n + o (n), 

and 

((1 _\ftf\n 

Iefnnma ,,(Otoa ) n ( ) as n -+ oo. 

COROLLARY 2. In the minimizing direction, i.e., f = 1/3, we have 

IlEn/3n I[ Oo) ( 3 1) as n -* 0. 

We can also consider the case v = 0 when the approximants l/E"(x) are drawn 
from column number zero. Then at x = m, 

I= i eh*(s)ds, e 
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where h*(s) = -ms/2 + n log(1 + s). If Sl, S2 are the points where h* takes its 
maxima in the two intervals, then as in Theorem 9.1, limn - .(S2 - s1) = 2. It is 
then easy to show that m = n/2 + Ck(n), where 40(n) = o(n) as n -x oo. Put 

Ii | f~~' en(s)e -(n)s/2 ds 
ai 

where h(s) = -s/4 + log(1 + s). h'(s) = -1/4 + 1/(1 + s), so that h'(s) > 0 
when s E [-1, 1]. Hence s1 = 1; h'(s) = 0 when s = s2 = 3. We obtain 

2n + 2e - n 14e -0 +( )2 2 2 n + 2e - 3 n 14e - 1 ( n )/2,-7 
I1 n 1 I2 Fn 

and e-"1 - e` - ne -(n) as n -x oo. The result is 

THEOREM 9.2. If the maximum of IEO, (x)I = 1ex- _ l/En(x)I on [0, xc) occurs at 
m, then m = n/2 + o(n) and 

||E, 11[,O 2(n + 1/2)(n )-1/2 asn . 

Added in Proof. It has come to the author's attention that the assumption of 
Theorems 5.1 and 6.1 that Yvn = -X1n + o(n) as n -x oo where X1 is a constant is 
justified by Theorem 2.2 of [7]. 
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